Learning Support Graphs for Exercise Physiology

54 pages

18 graphs of the fundamentals of exercise physiology with full interpretations.

An Appendix contains full colour versions of the graphs.

Contents

Introduction - Units, Homeostasis, What is a Watt?

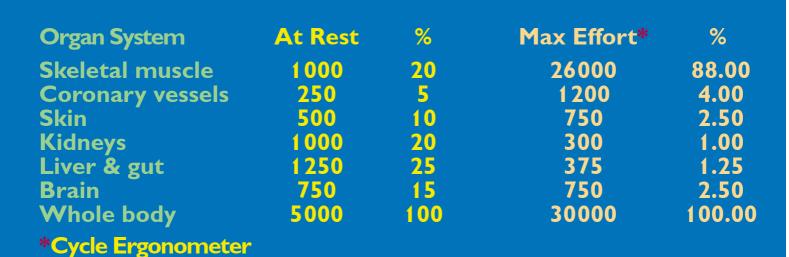
- 1 Power output of a sprinter and an endurance runner in a Wingate test on a cycle ergometer
- 2 Ideal linear relationship between heart rate and oxygen uptake, and cardiac output and oxygen uptake at sub-maximal work rates
- 3 Projection of maximum oxygen uptake from heart rates in a progressive incremental sub-maximal test
- 4 Oxygen uptake in relation to work output
- 5 The relationship between heart rate, work rate, and oxygen uptake during progressive incremental maximal testing
- 6 Oxygen uptake against time in a single subject during a progressive maximal test on *(i)* a treadmill; and *(ii)* a cycle ergometer
- 7 Heart rate and oxygen uptake against time of a middle distance runner, and a rugby forward, during a progressive maximal treadmill test
- 8 Determination of Lactate Threshold in a progressive incremental test by projection
- 9 Determination of Maximum Lactate Steady State in a progressive incremental test
- 10 Determination of heart rate training zones from blood lactate measurements during progressive incremental work loads.
- 11 The effect of endurance training on maximal oxygen uptake
- 12 Fitness progression of an athlete following a training regime as measured at 3 monthly intervals
- 13 Effect of training on post-exercise recovery heart rates in a single subject
- 14 The ventilatory 'break' point

and the sufficiency on a lower

- 15 Estimation of the respiratory substrates and the type of respiration from the Respiratory Exchange Ratio *(RER)* in relation to intensity of effort
- 16 Estimated blood flow in cm³ per minute to different organ/systems in a trained male at rest and during maximum effort
- 17 Response of physiological measures to increased work rate
- 18 Correlations of VO₂max between members of pairs of twins

Introduction

Graphs, such as those presented here, are the simplest way of summarising the complex interactions between body systems during varying levels of activity. They allow a clear visualisation of rates of change in the activity of these systems with differing demands.


They can thus serve as excellent focus points for lectures. A consideration of the trends shown in the graphs leads naturally to a discussion of the actual physiological events underlying these trends.


The metabolic demands of the tissues, predominately the skeletal muscles in exercise physiology, stimulate corresponding changes in activity of the body systems that supply those tissues. It is important to realise and adopt this 'demand led' approach to the subject, which is also the basis of the performance based approach. By asking questions about the demands of performance, there is a natural progression to explaining the functioning of the various systems.

Exercise physiology is definitely a study of demand and supply.

and the sufficiency on

Estimated Blood flow in cm³ per minute to different organ/systems in a trained male at rest and during maximum effort.

