Learning Resource
 Biomechanics

Tasks ש́ Solutions

$$
43 \text { pages }
$$

CONTENTS

A Linear motion p2 - velocity and acceleration;
B Forces and Newton's Laws p14-force, inertia and momentum.
C Impulse, Net force, Projectile motion p26-sprinting to demonstrate concept of impulse; high jump to demonstrate concept of net forces; shot putting to demonstrate projectile motion.
D Angular motion p40 Concept of angular momentum and its conservation during flight. Moment of inertia, and its relationship with angular velocity as shown during somersaulting and spinning

Each task provides information which contains embedded questions to reinforce learning. Answers are provided for instant feedback but could be covered for self-testing.

A Linear Motion

Task 1

Consider a man running in a straight line. If the man runs 600 metres in 2 minutes, we can calculate his average speed, because:

Average speed $=$ Distance covered \div Time taken
In this case, the man travelled 600 metres in 2 minutes. 2 minutes is the same as 120 seconds,
And hence his average speed $=600 \div 120=5.00$ metres per second (ms^{-1})
a What would be the average speed of a man who jogged 600 metres in 3 minutes? Do this calculation in the space below:

3 mins is the same as 180 seconds
$600 \div 180=3.33 \mathrm{~ms}^{-1}$

Similarly, we can calculate the time taken to cover a distance, if we know the average speed.

Consider a man running at $4.00 \mathrm{~ms}^{-1}$.
In 4 minutes (or $4 \times 60=240$ seconds), he will travel:
Average speed $=$ Distance \div Time
Which can be rearranged into:
Distance $=$ Time \times Speed
$=240$ secs $\times 4.00 \mathrm{~ms}^{-1}$
$=960$ metres
b How far would this man travel if he ran for;
i 10 minutes?:
10 mins is equivalent to $10 \times 60=600$ seconds
$600 \times 4.00=2400$ metres
ii 21 minutes?:
21 min equals $21 \times 60=1260$ seconds
$1260 \times 4.00=5040$ metres

Task 1 continued

c How long would it take for the man to run 1000 metres if he is travelling at $5.00 \mathrm{~ms}^{-1}$?

Time $=$ Distance \div speed
Time $=1000 \div 5.00=200$ seconds
= 3 mins and 20 seconds
d How far will a man travel if he walks for 12 minutes at $2.5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, and then realising he is late, runs for 5 minutes at $6 \mathrm{~ms}^{-1}$? 12 mins is the same as $12 \times 60=720$ seconds $720 \times 2.5=1800$ metres

5 mins is the same as $5 \times 60=300$ seconds
$300 \times 6=1800$ metres
he walks 1800 metres and runs 1800 metres - total
distance covered $=3600$ metres

